Органы растения, состав и структура клетки, ткани

Покровные ткани

Эпидерма – первичная покровная ткань высших растений. Она состоит из одного слоя клеток, расположенных на поверхности тела растения. Клетки эпидермы плотно сомкнуты друг с другом (без межклетников), а их клеточные стенки, обращенные к внешней среде утолщены. Снаружи эпидерма покрыта неклеточным слоем – кутикулой. Кутикула состоит из воскоподобных веществ и играет важную роль в защите растения от излишнего испарения. В составе эпидермы также можно встретить разнообразные волоски (трихомы). Трихомы могут быть одноклеточными или многоклеточными, простыми (в виде простого волоска) или сложной формы (разветвленные, звездчатые, Т-образные и т.д.)

Важной частью эпидермы также являются устьица. Устьице состоит из двух замыкающих клеток обычно бобовидной формы, между которыми находится устьичная щель, способная открываться и закрываться. Устьица выполняют две важные функции – регулируют интенсивность испарения, а также через устьичную щель осуществляется газообмен растения с внешней средой

Следует отметить, что эпидерма – это «прозрачная» ткань, в основных клетках эпидермы отсутствуют хлоропласты. Однако в замыкающих клетках устьиц хлоропласты есть, они необходимы для их работы по закрыванию и открыванию устьица. Клетки эпидермы, которые прилегают к замыкающим клеткам, называются побочными. По их числу, ориентации и взаимному расположению выделяют разные типы устьичного аппарата. Так, например, различают парацитный, диацитный, анизоцитный, антомоцитный и множество других типов устьичных аппаратов

Устьица выполняют две важные функции – регулируют интенсивность испарения, а также через устьичную щель осуществляется газообмен растения с внешней средой. Следует отметить, что эпидерма – это «прозрачная» ткань, в основных клетках эпидермы отсутствуют хлоропласты. Однако в замыкающих клетках устьиц хлоропласты есть, они необходимы для их работы по закрыванию и открыванию устьица. Клетки эпидермы, которые прилегают к замыкающим клеткам, называются побочными. По их числу, ориентации и взаимному расположению выделяют разные типы устьичного аппарата. Так, например, различают парацитный, диацитный, анизоцитный, антомоцитный и множество других типов устьичных аппаратов.

Рисунок 1: Эпидерма.

Рисунок 2: Основные типы устьичных аппаратов. 1 – диацитный; 2 –парацитный; 3 –анизоцитный; 4 — аномоцитный.

Вторичная покровная ткань высших растений – это пробка. Пробковый слой обычно образуется на вторично утолщенных стеблях и корнях высших растений. Пробка (она же феллема), образуется в результате работы так называемого пробкового камбия (или феллогена). В феллогене клетки делятся и откладываются наружу, их клеточные стенки утолщаются и суберинизируются (опрбковевают). Суберин – это вещество непроницаемое для воды и воздуха, следовательно, внутреннее содержимое клеток вскоре отмирает. В результате пробковый слой состоит из мертвых клеток и является газо- и водонепроницаемой покровной тканью.

Рисунок 3: Феллема, феллоген, феллодерма.

Размножение растительного организма (на примере покрытосеменных растений)

Покрытосеменные растения приспособили своё распространение к способам вегетативного и полового размножения. Вегетативный способ разделяется на естественный и искусственный. Природными способами можно считать распространение за счёт корневищ, усов, отпрысков, клубней или луковиц. Если же растение подвергается черенкованию, пинцировке, прививкам, луковичному размножению, то такие процессы относятся к искусственному размножению, свойственному для сельского хозяйства.

Оплодотворение гамет называют процессом полового размножения. В процессе участвуют мужские и женские клетки, образованные в разных репродуктивных частях органов. Спермия образована пыльцевым зерном, в то время как яйцеклетка образуется в семязачатке. Прежде чем произойдёт оплодотворение, пыльца переходит на рыльце пестика, что называется опылением, которое может иметь самостоятельный характер и перекрёстный.

Покрытосеменные растения проходят процесс оплодотворения два раза, поскольку образованная вегетативной клеткой пыльцевая трубка стремится к семязачатку через рыльце пестика. Когда цель достигнута и трубка лопнула, высвобождается пара спермия, которая сливается с яйцеклеткой и образует зиготу и триплоидную клетку. Образованные клетки способствуют лучшей адаптации к окружающим условиям и выживаемости.

Распространению зачатков растений способствуют процессы анемохории, гидрохории, орнитохории, зоохрии и антропохории, в которых участвуют ветер, вода, птицы, животные и люди соответственно.

Вентиляционные ткани (аэренхима)

Аэренхима – это вентиляционная ткань или ткань проветривания. Главную функцию аэренхимы выполняют крупные межклетники, по которым и циркулирует воздух. Воздух необходим высшим растениям как для дыхания, так и для процессов фотосинтеза. Наличие аэренхимы характерно для водных или околоводных высших растений. Воздух, находящийся в системе полостей аэренхимы, не только вентилирует все части растения (в особенности подводные), но и придает им плавучесть, как, например, листьям кувшинки.

Аэренхима обычно имеет вид системы полостей с однослойными стенками. Клетки, слагающие стенки полостей могут иметь вытянутую форму или же могут быть шарообразной формы. Сами полости при этом в некоторых местах имеют тонкие пленчатые перегородки из одного ряда мелких клеток. Клетки этих перегородок имеют звездчатую форму, таким образом, между «лучей» данных клеток остаются мелкие отверстия в пленке (межклетники). Данные перегородки не мешают выполнять вентиляционную функцию аэренхиме, пропуская воздух через эти мелкие отверстия. Однако, если произойдет повреждение и полость начнет заполняться водой, то такая перегородка не попустит капельно-жидкую воду, поскольку поверхностное натяжение жидкости не позволит ей пройти сквозь мелкие отверстия. Такая аэренхима встречается у кувшинки, ириса, рдеста и т.д.

В другом случае аэренхима может быть целиком представлена только звездчатыми клетками. Такие клетки формируют трехмерную рыхлую ткань, похожую по консистенции на вату. Между «лучей» этих клеток также формируется одно большое общее межклеточное пространство, по которому циркулирует воздух. Такой тип аэренхимы характерен для ситников, осок, некоторых злаков и т.д. Также рыхлая аэренхима, многократно преломляя свет, придает белый цвет лепесткам некоторых растений.

Рисунок: Аэренхима. А – аэренхима на поперечном срезе стебля; Б – клетки пленчатой перегородки, разделяющей полости аэренхимы; В – аэренхима из трехмерно расположенных звездчатых клеток.

Вентиляционная ткань выполняет свою функцию за счет многочисленных увеличенных межклетников. Стоит помнить, что межклетники по типу происхождения делятся на три типа. Схизогенные межклетники образовались в результате простого расхождения клеток в пространстве. Лизигенные полости формируются в результате деградации (лизиса) некоторых клеток. Крупные рексигенные полости являются результатом механического разрыва тканей, например, в центре черешков или стеблей некоторых растений. 

# Анатомия растений

# 10 класс

# 11 класс

Виды, функции и строение тканей растений.

Образовательная ткань растений.

Название тканиСтроениеМестонахождениеФункции
1. Верхушечная меристемаМолодые тонкостенные клетки с крупным ядром и густой цитоплазмой. Их деление происходит путем митоза .Кончики корней, почки побегов (конусы нарастания)Рост органов в длину благодаря делению клеток; образование тканей корня, стебля, листьев, цветков
2. Боковая (камбий)Между древесиной и лубом стеблей и корнейРост корня и стебля в толщину; камбий внутрь откладывает клетки древесины, а наружу — клетки луба.
 3. Вставочная меристема Между постоянными тканями Периодическое отрастание поврежденных листьев и стеблей

Образовательная ткань растений

Вставочная меристема

Покровная ткань растений.

Название тканиСтроениеМестонахождениеФункции
1. Первичная Кожица (эпидерма)Плотно сомкнутые живые клетки с устьицами и утолщенной наружной стенкой Покрывает листья, зеленые стебли, все части цветкаЗащита органов от колебаний температуры, повреждений и высыхания
2. Вторичная — пробкаМертвые клетки, их стенки пропитаны жироподобным веществом субериномПокрывает зимующие клубни, корневища, корни, стебли
3. Корка (покровный комплекс)Много слоев пробки, а также другие мертвые тканиПокрывает нижнюю часть стволов деревьев

Клетка эпидермы

Строение эпидермы

Покровная ткань растений — корка

Проводящая ткань растений.

Название тканиСтроениеМестонахождениеФункции
1. Сосуды древесины – ксилемаПолые трубки с одревесневающими стенками и отмершим содержимымДревесина (ксилема), проходящая вдоль корня, стебля, жилок листьевПроведение воды и минеральных веществ из почвы в корень, стебель, листья, цветки

2.Ситовидные трубки луба — флоэма

Сопровождающие клетки  или клетки-спутницы

Вертикальный ряд живых клеток с ситовидными поперечными перегородками

Сестринские клетки ситовидных элементов, сохранившие  свою структуру

Луб (флоэма), расположенный вдоль корня, стебля, жилок листьев

Всегда располагаются вдоль ситовидных элементов (сопровождают их)

Проведение органических веществ из листьев в стебель, корень, цветки

Принимают активное участие в проведении органических веществ по ситовидным трубкам флоэмы

3. Проводящие сосудисто-волокнистые пучкиКомплекс из древесины и луба в виде отдельных тяжей у трав и сплошного массива у деревьевЦентральный цилиндр корня и стебля; жилки листьев и цветков Проведение по древесине воды и минеральных веществ; по лубу — органических веществ; укрепление органов, связь их в единое целое

Проводящая ткань

Проводящая ткань

Сопровождающая клетка

Механическая ткань растений.

Название тканиСтроениеМестонахождениеФункции
1. КолленхимаЖивые клетки с неравномерно утолщенными стенкамиВ первичной коре молодых стеблейУкрепление молодых растущих органов
2. ВолокнаДлинные клетки с толстыми одревесневающими стенками и отмершим содержимымВокруг проводящих сосудисто-волокнистых пучковУкрепление органов растения благодаря образованию каркаса
3. СклереидыТолстостенные клетки, нередко одревесневшиеТвердые оболочки плодов, в мякоти незрелых плодов

Механические ткани растений

Механические ткани растений

Основная ткань растений.

Название тканиСтроениеМестонахождениеФункции
1. АссимиляционнаяСтолбчатая и губчатая ткань с большим количеством хлоропластовМякоть листа, зеленые стеблиФотосинтез, газообмен
2. ЗапасающаяОднородные тонкостенные клетки, заполненные зернами крахмала, белка, каплями масла, вакуолями с клеточным сокомКорнеплоды, клубни, луковицы, плоды, семенаОтложение в запас белков, жиров, углеводов (крахмал, сахар, глюкоза, фруктоза)

Основные ткани растений

Основные ткани растений

На рисунке ниже представлен сосудисто-волоконный проводящий открытый пучок.

Сосудисто-волоконный проводящий открытый пучок

  1. Флоэма
  2. Ксилема
  3. Камбий
  4. Склеренхимные волокна

Информация о статье:

Ткани растенийВиды, функции и строение тканей растений.

Date Published: 11/29/2016 В статье описываются основные ткани растений. Их функции, строение. В качестве примеров приведены рисунки.

10 / 10 stars

Что такое ткани растений

Растительными тканями называют сходные по строению и происхождению группы клеток, выполняющие идентичные функции и назначения. Многим известно о широкой распространенности растений на Земле. Они окружают нас повсюду, встречаются в местах, пригодных для жизни и здорового роста.

Произошедший процесс эволюции, когда растения находились в водных условиях, а затем вышли на земную поверхность, вынудил их на появление предохраняющих эпителий. Среда обитания изменилась, они нуждались в постоянной защите от непостоянства погоды и влияющих природных изменений. Закрепившись корнями в почву, нижняя часть тела питалась почвенными минералами, дающими рост и лиственное покрытие, верхняя же насыщалась надземным воздухом.

Растения постепенно привыкали к новой окружающей среде, обновляясь и акклиматизируясь. Структура и строение становились сложнее, стали появляться многочисленные разнообразные ткани, у некоторых растений достигающие до нескольких десятков видов. Под снятой сухой коркой дерева, можно увидеть более светлую, немного рыхлую кору. Твердые и мягкие слои и будут различным эпидермисом, играющим в жизни растений свою определенную роль. Выделяют несколько самых основных групп растительных оболочек:

  • простая – состоящая из клеток одного вида (меристема, паренхима, колленхима);
  • сложная – включающая разные и отличающиеся строением клетки (флоэма, ксилема).

Проводящая

Строение проводящей ткани растений

Проводящая ткань отвечает за перенос питательных веществ в растительном организме. Известны 2 разновидности проводящих тканей — луб и древесина.

По восходящим путям идет транспорт воды и минералов от корневой системы к вышерасположенным органам растения — через сосуды и трахеиды древесины (ксилема). По нисходящим путям переносятся синтезированные органические соединения к корневой системе с помощью ситовидных трубок луба (флоэма).

Луб представляет собой совокупность безъядерных длинных клеток, вертикально идущих друг за другом. Стенки, которыми клетки соприкасаются, имеют множество выходов, поэтому жидкость может свободно передвигаться. На всем протяжение ситовидные трубки сопровождают вспомогательные клетки спутницы, они продуцируют ферментативные соединения необходимые для эффективного транспорта.

Древесина осуществляет ток жидкости с помощью трахеид и сосудов. Трахеиды – это отмершие клетки с отвердевшими стенками. Сосуды — это последовательный ряд клеток, идущих друг за другом цепочкой. Перегородки между смежными клетками разрушены, поэтому ничего не препятствует току жидкости.

Разновидности тканей

Растительный организм состоит из нескольких видов тканей. Они различаются по строению и функциям. Основные группы тканевых структур:

  1. Образовательная. Она подразделяется на следующие типы: вставочные, верхушечные, боковые и раневые. Функция механических тканей этой группы заключается в образовании новых и росте существующих клеток, восстановлении повреждённой структуры. Образовательное тканевое вещество сконцентрировано в верхушечной части стебля, на кончиках корня, в черешках листьев и междоузлиях.
  2. Основная. Она включает в себя фотосинтезирующую часть, а также паренхиму, которая делится на водоносные, губчатые, столбчатые, запасающие и воздухоносные виды. Основная структура выполняет несколько функций: участвует в газообмене и фотосинтезе, отвечает за накопление питательных веществ и запасание воды. Части растения, где локализуется паренхима и фотосинтезирующее вещество, — плоды, стебли и листья.
  3. Проводящая. Группа включает флоэму и ксилему, которые доставляют воду и питательные вещества к стеблю и листьям. От этих участков соединения транспортируются в плоды. Проводящая ткань обладает высокой упругостью, она находится в клетках луба и сосудах, расположенных в древесине.
  4. Покровная. Основные виды — эпидерма, корка и пробка. В организме растения они участвуют в газообмене, а также отвечают за транспирацию и выполняют защитную функцию. Места локализации покровной структуры — корни, корневища, кора и листья.
  5. Выделительная. Деление на разновидности отсутствует. Функции выделительной ткани: выделение влаги, продуктов переработки питательных веществ, сока, нектаров. Части растения, где локализуется тканевое вещество, — волоски, млечники, нектарники.

Основные ткани

Основные ткани (паренхима) в органах растения заполняют пространство между другими тканями и могут выполнять разные функции в зависимости от особенностей строения. Паренхима состоит из крупных, рыхло расположенных клеток. В связи с выполняемыми функциями выделяют следующие виды паренхимы: ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму), водоносную.

Ассимиляционная паренхима содержит хлоропласты и выполняет функцию фотосинтеза. Она содержится во всех зеленых частях растений. Запасающая паренхима состоит из крупных тонкостенных живых клеток, в которых накапливаются питательные вещества: крахмальные (картофель) или белковые (пшеница) зерна, капли жира (подсолнечник). Она хорошо развита в плодах, семенах и запасающих органах. В воздухоносной паренхиме (аэренхиме) имеются большие межклетники (полости), в которых запасается воздух, участвующий в газообмене и обеспечивающий плавучесть растений. Аэренхима содержится во всех органах водных растений, в дыхательных корнях болотных растений. Водоносная паренхима накапливает в межклетниках запас воды и хорошо развита в листьях и стеблях растений засушливых мест. 

Эволюционный процесс

Появление у растительных организмов органов и тканей связано с изменением среды обитания. Водоросли не имеют специализированных покровов. Дело в том, что все их клеточки находятся в одинаковых условиях:

  • освещенность;
  • температура;
  • питание;
  • газообмен и т. д.

Все клетки водорослей имеют хлоропласты и способны производить органические вещества из неорганических, обеспечивая тем самым полноценное питание организма. Однако после выхода на сушу предкам современных высших растений пришлось столкнуться с иными условиям.

Новая среда обитания оказалась неоднородной. В результате им пришлось решать большое количество проблем:

  • сохранение спор;
  • создание опоры для защиты от ветра и дождя;
  • поглощение влаги из земли;
  • защита от высыхания.

Механические ткани

Существует две специализированные механические ткани высших растений – склеренхима и колленхима.

Склеренхима, как правило, состоит из клеток вытянутой формы – волокнообразных. Их клеточные стенки утолщаются и лигнифицируются, то есть одревесневают. Живое содержимое клетки впоследствии отмирает. Таким образом, склеренхима – это мертвая ткань, механическую функцию в которой выполняют жесткие клеточные стенки. Склеренхима твердая жесткая ткань и в растении она выполняет армирующую функцию, располагаясь обычно тяжами или слоями. Однако иногда склеренхима может быть представлена в виде отдельных клеток с одревесневшими клеточными стенками, разбросанных в толще некой мягкой ткани (например, паренхимы). Такие клетки называются склереидами. По форме различают разные типы склереид: брахисклереиды, астросклереиды, остеосклереиды и волокнистые склереиды. Все склеренхимные элементы вместе составляют стереом – совокупность всех толстостенных одревесневших клеток растения. Следует также помнить, что отчасти механическую функцию, подобно склеренхиме, выполняет водопроводящая ткань ксилема (в особенности ядровая древесина – вторичная ксилема, прекратившая проводить воду).

Рисунок 1: Склеренхима.

Колленхима также является механической тканью, однако клетки ее остаются живыми. Их клеточные стенки утолщаются, но неравномерно и не одревесневают. Живые клетки упругие, так как находятся под тургорным давлением, а клеточные стенки эластичны, поскольку состоят из полисахаридов. Именно эти свойства и позволяют колленхиме выполнять свою механическую функцию. Таким образом, колленхима – это живая упругая эластичная механическая ткань. Обычно колленхима располагается в тех органах высших растений, которые подвержены изгибу и должны быть упругими. Например, это стебли травянистых растений, особенно если стебель граненый или ребристый, то вдоль граней под эпидермой, скорее всего, располагаются тяжи колленхимы. Также колленхима часто встречается в листьях в черешке и вдоль средней жилки, поскольку именно эти части должны быть эластичными и упругими. Выделяют три типа колленхимы: уголковую (клеточные стенки утолщены в местах контакта трех и более клеток – «в уголках»), пластинчатую (утолщены продольные клеточные стенки) и рыхлую (похожа на уголковую, но с крупными межклетниками).

Рисунок 2: Колленхима. А – рыхлая; Б – пластинчатая; В – уголковая. 1 – первичная; клеточная стенка; 2 – вторичная клеточная стенка; 3 – межклетник; 4 – протопласт.

Строение различных тканей

Различие в функциях типов тканей, а также разнообразие их физических свойств обусловлено наличием индивидуальных особенностей каждого из видов биологических тканей.

Эпителиальная

Отличительной особенностью эпителиальных покровов является плотное прилегание клеток друг к другу и почти полное отсутствие межклеточного вещества в крайне узких межклеточных пространствах. В зависимости от местоположения и функции эпителия его клетки могут образовывать один или несколько рядов. Например, эпителий, покрывающий кожу (эпидермис), состоит из 5 слоев.

Соединительная

Эта разновидность распространена в организме животных и человека повсеместно. Из неё состоят:

  • кости;
  • хрящи;
  • связки;
  • сухожилия;
  • жировая прослойка.

Из соединительной ткани образованы и фасции, покрывающие мышцы, поддерживающие их базовый тонус — это своеобразная «одежда» мышц.

Кровь также относится к соединительной ткани.

Строение различных типов соединительной ткани определяет их физические свойства:

  • Рыхлая соединительная ткань. Отличительной чертой ее строения является небольшое количество клеточных элементов, расположенных на различном расстоянии друг от друга, и большое количество межклеточного вещества, в котором разбросаны клетки.
  • Плотная соединительная ткань, напротив, довольно структурирована. Количество межклеточного вещества небольшое. К этой разновидности относятся костное вещество, сухожилия.

Особенностью строения костного вещества является и состав межклеточной субстанции, состоящей на 95% из белка коллагена и на 5% — из минеральных веществ, представленных, главным образом, солями кальция. Волокна коллагена ориентированы параллельно направлению нагрузки на кость, что и обусловливает высокую прочность этого органа. Такой состав и определяет основные свойства костей — сочетание пластичности с прочностью.

Мышечная

Клетки мышечной ткани имеют веретенообразную форму; они несколько утолщенные в середине. Мышечные волокна располагаются группами, внутри которых они ориентированы параллельно друг другу.

Особенностью мышечных клеток (волокон) является их способность сокращаться в ответ на сигналы из центральной нервной системы.

Нервная

Нервная ткань состоит из нервных клеток — нейронов, имеющих звёздчатую форму и множество отростков. Отростки нервной клетки, имеющие большую протяжённость и практически без ответвлений, называемые аксонами, отвечают за проведение нервного импульса с периферии к нейрону. Тогда как дендриты — короткие и разветвлённые отростки — несут сигнал от клетки к периферическим тканевым образованиям.

Нервные клетки (нейроны) расположены локально, образуя слой серого вещества в головном и спинном мозге. Кроме того, имеются они и в нервных узлах, а также составляют подкорковые ядра. Совокупность их отростков образует так называемое белое вещество. Такая сосредоточенность нервных клеток в структурах центральной нервной системы является особенностью анатомии нервной системы.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Вы здесь

Комнатные цветы Справочные материалы. Ботаника

Общий обзор

Органы. Цветковые растения очень разнообразны, но их объединяет то, что все они имеют органы: вегетативные (от лат. «вегетативус» – растительный) – корень, лист, стебель, служащие для питания и роста, и генеративные (от лат. «генерация» – рождение, воспроизведение) – цветок – орган размножения. Органы растений отличаются друг от друга не только внешней формой, но и внутренним строением.

Клетка. Основной структурной и физиологической единицей всех растений является клетка. Она имеет целлюлозную оболочку (мембрану), цитоплазму, в которой расположены органоиды (ядро с ядрышком, пластиды и др.), и вакуоли с клеточным соком (рис.1).

Оболочка придает форму клетке и предохраняет от внешних воздействий. Между оболочками клеток находится межклеточное вещество, соединяющее клетки. При разрушении межклеточного вещества клетки разъединяются. Живое бесцветное вязкое вещество клетки – цитоплазма – медленно движется и может сжиматься. В цитоплазме находятся все органоиды клетки. Ядро имеет сложный состав и строение. Без ядра клетка не может расти и размножаться и через некоторое время погибает. Цитоплазма и ядро – важнейшие части живой клетки. В цитоплазме распложены пластиды – зернистые образования различной формы. У цветковых растений различают зеленые (хлоропласты), желтые, оранжевые, красные (хромопласты) и бесцветные (лейкопласты) пластиды. От них зависит окраска растений или их органов. В клетках, особенно старых, видные полости, заполненные клеточным соком. Эти полости называются вакуолями. В клеточном соке вакуолей содержатся сахар, соли, различные красящие вещества, растворенные в воде.Живые клетки питаются, дышат, растут, размножаются. При движении цитоплазмы, поступившие в нее вещества перемещаются из одной части клетки в другую, а также из клетки в клетку. Растения увеличиваются в размерах за счет деления и роста клеток. При делении из одной материнской клетки образуются две дочерние. Когда, вырастая, обе клетки достигнут размеров материнской, они снова делятся. Таким путем происходит увеличение количества клеток в каждом органе.

Ткани. Группы клеток, сходных по строению и выполняющих одинаковые функции, называют тканью. Клетки образовательных тканей (камбий, конус нарастания стебля, корня) имеют небольшие размеры, тонкую оболочку и крупное ядро, из них формируются другие типы тканей (рис.2).

Клетки ассимиляционной ткани (мякоть листа, зеленые клетки коры стебля) содержат хлоропласты и осуществляют процесс фотосинтеза. В клетках запасающих тканей (сердцевина стебля, мякоть клубней, корнеплодов) откладываются запасы органических веществ. По клеткам проводящих тканей (сосуды древесины, ситовидные трубки) передвигаются вода и растворенные в ней вещества. Клетки покровных тканей (кожица, пробка) защищают внутренние ткани от высыхания, температурных перепадов и различных повреждений. Клетки механических тканей (древесные и лубяные волокна) придают прочность органам растения. 

Таким образом, цветковое растение состоит из органов, органы – из тканей, а ткани – из клеток, которые функционируют в определенной взаимосвязи в целостном живом организме.

Биология. Справочные материалы / под ред. Д.И. Трайтака. – М.: «Просвещение», – 1983. – С. 6-7.

Рейтинг: 

Points: 9

Функции тканей растений и виды

Существует несколько типов видоизмененных растительных тканей, приспособленных к выполнению одной или одновременно нескольких важнейших для растительных организмов функций. У каждого вида есть свое определенное предназначение и роль, поставленная задача, определенная природой. Ткани делятся:

  • покровные – защищают растительные организмы от плохих погодных условий (высыхания, зараженности грибками и бактериями), способствуют газообмену, фотосинтезу;
  • проводящая – обеспечивает проведение влаги от корневой системы к стеблям и листьям, насыщая их минералами и органическими веществами;
  • механические – осуществляют укрепление и упругость, образовывая защиту в виде каркаса, придавая черенковую прочность;
  • основные – создают главную основу всех органов растений, накапливая и запасая припасенные полезные вещества (белки, жиры, крахмал, глюкозу, углеводы), способствуют постоянному удержанию влаги, воздухоносной вентиляции;
  • образовательные – образовывают новые растения, благодаря процессу деления и росту, появляются многочисленные стебли и ответвления;
  • секреторные – способны вырабатывать, выделять и насыщать различные плоды соком и маслами, насыщая листья, цветки, ягоды, особенным ароматом.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Строение клеток

Наличие сформированных тканей и функционирующих органов относит растения к высшей группе царства растений. Примитивизм в строении и отсутствие ряда органов понижает разряд до низших растений, примером которого могут служить водоросли.

Высшие растения и низшие на каком-либо из эволюционных этапов обладали ядерным строением клетки, поэтому их причисляют к эукариотам. Клеточные органоиды разделяются по функциональному назначению:

  • За фотосинтез отвечают хлорофилл содержащие хлоропласты.
  • Хромопласты способны пигментировать цветы или плоды.
  • Цитоплазма обладает ролью накопителя для зернового крахмала.
  • Центральная вакуоль выполняет накопительную и сберегательную функцию для клеточного сока.

При всей схожести некоторые клеточные стенки образованы не целлюлозой, а отмиранием животного начала. При пропитывании этого вида стенок веществом лигнином или суберином результат будет выглядеть как одревеснение или опробковение клеток.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий